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This research makes the improvement of the errors surrounding edges and corners of
thin electromagnetic regions by means of the magnetic field finite element formulation.
Classical thin shell electromagnetic models are usually replaced by impedance-type interface
conditions throughout surfaces that ignore errors in the calculation of the local fields
(magnetic vector potentials, magnetic fields, eddy current densities and Joule power loss
densities) in the vicinity of borders and corners. In this context, the inaccuracies of the local
fields surrounding edges and curvatures related to the thin shell models are improved by
a perturbation finite element technique, permitting to solve each subproblem on its own
separately mesh and geometry, which makes reducing the computational time.

1 Introduction
Thin shell (TS) electromagnetic models have been presented by
many author [1]-[3] to neglect meshing volumic shells (Fig. 1, left)
and are introduced by surfaces (Fig. 1, right) with interface condi-
tions (ICs) related to 1-D analytical distributions across the shell
thickness.

Figure 1: Volumic shell Ωt (left) and IC Γt (right).

In general, the ICs cancel corner and curvature effects, and lead
to inaccuracies of magnetic fields, eddy current losses and Joule
power losses in the neighbouring regions of geometrical discontinu-
ities around borders and corners, changing with the thickness. So as
to overcome with this disadvantage, a subproblem method (SPM)
with a magnetic vector potential formulation for improving errors

next to corners and curvatures occurring from the TS has recently
presented by many author [4, 5].
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Figure 2: Decomposition of full problem into several SPs.

The idea of this article is to present an extension of the one-
process SPM that proposes the magnetic field formulation. The
hearth of this technique is based on a SPM, which consists in split-
ting a complete/full problem (including of stranded inductors and
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magnetic or conductive thin structures) into two subproblems (SPs),
the complete/full solution being the superposition of all solutions
for each SPs.

A problem involving stranded inductors and TS models (Fig. 2,
top right) is first considered on a simplified mesh. The obtained
solution is then adjusted by a improvement problem with the ac-
tual volume thin regions (Fig. 2, bottom). In this process, each SP
is constrained by volume sources (VSs) or surface sources (SSs),
where VSs present variations of the permeability and conductivity
in volume thin regions and SSs express variations of ICs across
surfaces from previous SPs. Each process allows to inherit the
previous sources/solutions for new SPs instead of starting a new
complete problem for each new geometries as a traditional finite
element method (FEM) [6].

2 Sequence of Pertubation Technique

2.1 Magnetodynamic subproblem

In the heart SPM, a canonical magnetodynamic SP p considered
at step p is solved in a domain Ωp, with boundary ∂Ωp = Γp =

Γh,p ∪ Γe,p. The eddy current density is defined in conducting part
Ωc,p of of Ωp, with Ωp = Ωc,p ∪ ΩC

c,p (where ΩC
c,p is the non-

conducting region. The set of maxwell’s equations, constitutive
laws and boundary conditions (BCs) of the SPs p give [7, 8]:

curl hp = jp , div bp = 0 , curl ep = −∂t bp , (1a-b-c)

bp = µphp + bs,p , ep = σ−1
p jp + es,p , (2a-b)

n× hp|Γh,p = jsu,p , n× ep|Γe,p⊂Γb,p = ksu,p , (3a-b)

where hp is the magnetic field (A/m), bp is the magnetic flux density
(T), ep is the electric field (V/m), js,p is the electric current density
(A/m2), µp is the magnetic permeability (H/m), σp is the electric
conductivity (S/m) and n is the unit normal exterior to Ωp. The
source fields (bs,p and es,p) in (2a-b) are VSs, and the source fields
( jsu,p and ksu,p) in (3a-b) are SSs. In general, SSs are defined as
zero for classical homogeneous BCs. ICs can express their dis-
continuities across the negative and positive sides (γ+

p and γ−p ) of
any interface γp (with the notation [·]γp = |γ+

p − |γ−p ) in Ωp. For the
idealized thin regions, these ICs are SSs that have to account for
special phenomena ocurring between two sides of γp [4, 5].

2.2 Relations of SPs with SSs and VSs

As proposed in [3], the relation between SPs p (TS models and
volume corrections) are respectively defined via SSs and VSs. A
volume thin region Ωt,p in Ωc,p is initially removed from Ωi and
then defined with the double layer TS surface Γt,p. For the magnetic
field formulation (hp-conformal formulation), the coefficient dis-
continuity hd,t,p of the tangential component ht,p = (n× hp) × n of
hp is presented across via the TS model, i.e. [3]

[n× ht,p]Γt,p = n× hd,t,p , (4)

where the discontinuous component (hd,t,p) of the field ht,p is con-
sidered as zero along the TS border, which neglects the present
magnetic fields. To present this discontinuity, it gets [3]

ht,p|Γ+
t,p

= hc,t,p + hd,t,p , ht,p|Γ−t,p = hc,t,p , (5)

where hc,p is the continuous component of hp. The expressions (5)
also applies on Γt,p for the tangential components ht,p, hc,t,p and
hd,t,p.

The TS model combined with the ICs and BCs of the impedance
BC type [3] are presented through hc,t,p and hd,t,p, that is

[n× ep]Γt,p = µpβp ∂t(2hc,t,p + hd,t,p), (6)

n× ep|Γ+
t,p

=
1
2
[
µpβp ∂t(2hc,t,p + hd,t,p) +

1
σβ

hd,t,p
]
− n× ep|Γ−t,p ,

(7)

β = γ−1
p tanh(

dpγp

2
), γp =

1 + j
δp

, δp =

√
2

ωσpµp
, (8)

where dp is the local thickness of the TS, δp is the skin depth, ω =

2π f with f is the frequency, j is the imaginary unit and ∂t ≡ jω. It
should be noted that the term −n× ei|Γ−t,i in (7) is presented as a SS
for the SPs.

As presented, the inaccuracy on the TS solution of a problem p
(e.g, p = u) is then improved by a volume correction SP k (e.g., p =

k) which scopes with the TS hypothesis [3]. The changes from a TS
region (µu and σu for SP u) to a volume thin region (µk and σk for
SP k), the field sources (hs,k and js,k) in (2a-b) are defined for the
total fields [5, 8]

bs,k = (µk − µu)hu, es,k = (σ−1
k − σ

−1
u ) ju. (9 a-b)

The equations in (9 a-b) are then presented by the updated relations
bu + bk = µp(hu + hk) and eu + ek = σ−1

p ( ju + jk). Thus, for any
number of sources of SPs, one can be written as

bs,k = (µk − µu)
∑

q∈P,q,p

hq, (10)

es,k = (σ−1
k − σ

−1
u )

∑
q∈P,q,p

jq, (11)

where q ∈ P (total SPs) except the current SP u relates to the sources
(bs,k and es,k) via their last calculated corrections of hq and jq.

3 Finite element weak formulation

3.1 hp-magnetic field formulation with source and re-
action fields

The weak magnetic field formulation (hp-conformal formulation)
is obtained via the Faraday’s law (1c) [5, 8, 9]. The magnetic field
hp is decomposed into two parts, hp = hs,p + hr,p, where hs,p is the
source magnetic field presented via curl hs,p = js,p, and hr,p is the
reaction magnetic field. In ΩC

c,p, the field hr,p is expressed through a
scalar potential φp, i.e. hr,p = −grad φp. The weak forms for SPs p
(p = u, k...) are [10]

∂t(µp(hr,p + hs,p), h′p)Ωp + (σ−1
p curl hp, curl h′p)Ωc,p + (es,p, curl h′p)Ωp

+∂t(bs,p, h′p)Ωi + 〈n× ep, h′p〉Γe,p + 〈[n× ep]Γp , h
′
p〉Γp = 0,

∀h′p ∈ H1
p(Ωp) (12)
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where H1
p(Ωp) including the basis functions for hp as well as for

the test function h′i is a curl-conform function space presented in
Ωp. Notation of (· , ·)Ωi is volume integral in Ωp and < · , · >Γp is the
surface integral on Γp of the product of their vector field arguments.
The term on surface integral Γe,p gives as a natural BC of type (3
b), usually zero. It should be noted that the source field hs,p in
(12) is performed through a projection technique [11] of a known
distribution js,u, i.e.

(curl hs,p, curl h′s,p)Ωp = ( js,p, curl h′s,p)Ωs,p ,∀h′s,p ∈H1
p(Ωp) . (13)

3.2 Weak formulation for the TS model

The TS model [3] occurred in the general equation (12) is defined a
free discontinuous hd,t,u (p =u) along the TS and hd,u in the exterior
region related to Γ+

u and a BC n× eu|Γu+ . This discontinuity is used
as a test function h′u (h′u = h′c,u + h′d,u) in (12), where term contribu-
tions in the volume integrals in Ωu are defined on the positive side
of the TS. For that, the term 〈[n× eu]Γu , h

′
u〉Γu is analysed as

〈[n× eu]Γu , h
′
u〉Γu = 〈[n× eu]Γu , h

′
c,u〉Γu + 〈n× eu|Γu+ , h′d,u〉Γu+

+〈n× eu|Γu−
, h′d,u〉Γu−

, (14)

where with h′d,u is equal to zero on the negative side of TS Γu−

[11]. Moreover, the term 〈[n × eu]Γu , h
′
c〉Γu and 〈n × eu|Γu+ , h′d〉Γu+

are presented by (6) and (7), respectively. Therefore, (3.2) becomes

〈[n× eu]Γu , h
′
u〉Γu = 〈µuβu ∂t(2hc,t,u + hd,t,u), h′c,u〉Γu+

〈
1
2
[
µuβu ∂t(2hc,t,u + hd,t,u) +

1
σβ

hd,t,u
]
, h′d,u〉Γu+ . (15)

By substituting the equation (15) into (12), the weak formulation
for the TS model is obtained

∂t(µu(hr,u + hs,u), h′u)Ωu + (σ−1
u curl hu, curl h′u)Ωc,u

+〈
1
2
[
µuβu ∂t(2hc,t,u + hd,t,u) +

1
σβ

hd,t,i
]
, h′d,t,u〉Γu+

+〈µuβu ∂t(2hc,t,u + hd,t,u), h′c,t,u〉Γu + 〈n× eu, h′u〉Γe,u−Γt,u = 0,

∀h′i ∈ H1
i (Ωi) (16)

where the surface integral term on Γe,u − Γt,u is usually considered
as zero on a natural BC.

3.3 Projection of solutions between sub-models

In the strategy SP technique, the solutions found from a previous
problem SP u are considered as sources (SSs and VSs) in a sub-
domain Ωs,k ⊂ Ωk of the SP k (current SP), e.g. from SP u to SP
k. At the discrete level, the field hu in the mesh of the SP u is
transferred to the mesh ot the SP k (i.e. hu,k−pro j). This will be
performed via a projection technique [11] of its curl limited to Ωs,k.
The field hu,k−pro j is defined

(curl hu,k−pro j, curl h′)Ωs,k = (curl hu, curl h′)Ωs,k ,∀h′ ∈ F1
k (Ωs,k)

(17)

where H1
k (Ωs,k) is a curl-conform function space containing the

projection of hu and the test function h′ in the mesh k. Directly pro-
jecting hu instead of its curl will give numerical errors as estimating
its curl.

3.4 Improvement of the TS model

The inaccuracies of the TS solution obtained in SP u is now im-
proved by the actual volume SP k via VSs defined in (10) and (11).
They are taken into account the changes from µu and σu in the TS
model to µk and σk in the volume shell. These VSs also appear
in (12) via the volume integrals (∂t(bs,k, h′k)Ωk and (es,k, curl h′k)Ωk ).
The weak form for SP k is written as

∂t(µk hk, h′k)Ωk + (σ−1
k curl hk, curl h′k)Ωc,k + +(−eu, curl h′k)Ωk +

∂t((µk − µu)hu, h′k)Ωc,k + 〈[n× ek]Γt,k , h
′
k〉Γk + 〈n× ek, h′k〉Γe,k−Γt,k

= 0,∀h′k ∈ H1
k (Ωk) (18)

where the field eu is also performed via an electric problem [9].
As a sequence, the field hu is transferred to the mesh of SP k via
(17), where Ωs,u is limited to a single layer surrounding of the vo-
lumic shell. In the same time to the VSs in (12), SSs related to
ICs [3], [5] have to extract the TS discontinuities, i.e, hd,k =−hd,u

and [n × ek]Γts,k = −[n × eu]Γts,u . The involved trace [n× eu]Γts,k is
generally defined through other integrals in (12), with Γts,u = Γts,k,
i.e.

〈[n× ek]Γts,k , h
′
k〉Γts,k = 〈−[n× eu]Γts,k , h

′
k〉Γts,k = (µu∂t hs,u, h′k)Ωu=Ωk

+(µu∂t hu, h′k)Ωu=Ωk . (19)

The surface integral in (19) is implemented in the step u. At
the discrete level, the limitation of the two volume integrals in (19)
is defined in a single layer of FEs on both sides of Γt,u touching
γ+

k = γ+
u = Γ+

t , because it involves only the trace n× h′k |γ+
k
.

4 Numerical test

The practical test is a TEAM workshop problem (problem 21, model
B) [12] including two coils and a magnetic shielding plate (Fig. 3).
The test problem is considered in both 2-D and 3-D models.

Figure 3: Geometry of the test problem 21 (model B).
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Figure 4: Magnetic flux densities for the TS solution SP u (bu, top left) and volume
correction solution SP k (bk , bottom right). Projections of SP u solutions (bpro j, VS,
top right) and (bpro j, SS, bottom left) in the SP k.
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Figure 5: Relative improvements of the joule power loss density (top) and the
magnetic flux (bottom) along the thin plate, with σplate =6.484 MS/m.

The first case is tested with a 2-D model: The SP u with the
inductors and TS FE magnetodynamic model is solved on a lighter
mesh (Fig. 4 (bu), top left). A volume correction SP k then replaces
the TS FEs with the classical volume FEs containing an actual re-

gion of the thin plate and its surrounding, with a suitable refined
mesh without including the inductors anymore (Fig. 4 (bk), bottom
right). The projections of TS solution in TS SP u for the VS and
SS are respectively pointed out (Fig. 4 (bpro j, VS), top right) and
(Fig. 4 (bpro j, SS), bottom left). The relative improvements of the
joule power loss density and the magnetic flux along the plate are
depicted in Fig. 5. They can touch several tens of percents near the
end of the TS, such as 80% (Fig. 5, top) and 85% (Fig. 5, bottom),
with d = 10 mm and δ = 1.977 mm for both cases. For d = 10
mm, the inaccuracy is lower than 50% (Fig. 5, top) and 55% (Fig. 5,
bottom).

Figure 6: Colored maps of eddy current densities indicating the regions with relative
volume improvements greater than 2% for d = 5 mm, 7.5 mm and 10 mm (from left
to right), f = 50 Hz, µplate = 200 and σplate =6.484 MS/m.
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Figure 7: Eddy current density (top) and joule power loss density (bottom) for the
TS and the volume corection along the vertical half edge (z-direction) ( f = 50 Hz,
µplate = 200 and σplate =6.484 MS/m).

The next test is considered with a 3-D model: The errors of
the TS model SP u are shown in Fig. 6 (from left to right). They
increase with plate thickness, specially near the ends of the plate, are
perfectly improved whatever their order of magnitude. The accuracy
of the improvement is directly related to the volume correction of
the plate and its surrounding.
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The inaccuracies on the eddy current density and joule power
loss density of TS model (SP u) are improved by the significant
volume correction (SP k) (Fig. 7. The inaccuracies on the local
fields (eddy current density and joule power loss density) along
the vertical half edge (z-direction) near the plate ends reaches 60%
(Fig. 7, top) and 80% (Fig. 7, bottom), respectively, with δ = 2.1mm
and d = 5mm. The volume corrections are then compared to be
similar the reference solutions (obtained from the FEM) for different
parameters in both cases.

5 Conclusions
In this study, a perturbation Finite Element Approach has been pro-
posed with a magnetic field formulation for a one-way coupling in
order to improve the errors around edges and corners inherent to the
TS FE assumptions. The correctly improving on the local fields of
magnetic flux densities, eddy current losses and joule power losses
is successfully achieved surrounding the borders and corners of the
TS structures. The proposed method has been developed for the
one-way coupling in two steps. All the processes of the method have
been successfully validated on the international practical problem
(TEAM workshop problem 21, model B) [12].

The source-codes of the this technique have been being extended
based on the source-codes of the SPM that was developing by author
and two Prof. Patrick Dular and Prof. Christophe Geuzaine at the
Dept of Electrical Engineering and Computer Science, University
of Liege, Belgium. They will be then ran and simulated in the back-
ground of the Getdp (http://getdp.info) and Gmsh (http://gmsh.info)
softwares developed by Prof. Patrick Dular and Prof. Christophe
Geuzaine [13, 14]. These are the open-source codes for anyone to
be able to write adapt source-codes for solving studied problems (if
possible).
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problem Approach for Modelding Multiply Connected Thin Regions with an
h-Conformal Magnetodynamic Finite Element Formulation,” in EPJ AP., vol.
63, no. 1, 2013.

[11] C. Geuzaine, B. Meys, F. Henrotte, P. Dular and W. Legros, “A Galerkin
projection method for mixed finite elements,” IEEE Trans. Magn., Vol. 35, No.
3, pp. 1438-1441, 1999.

[12] Zhiguang CHENG1, Norio TAKAHASHI2, and Behzad FORGHANI, “TEAM
Problem 21 Family (V.2009),” Approved by the International Compumag Soci-
ety Board at Compumag-2009, Florianopolis, Brazil.

[13] C. Geuzaine and J.-F. Remacle “Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities,” International
Journal for Numerical Methods in Engineering 79(11), pp. 1309-1331, 2009.

[14] P. Dular and C. Geuzaine “GetDP reference manual: the documentation for
GetDP, a general environment for the treatment of discrete problems,” Univer-
sity of Liege, 2013.

www.astesj.com 170

http://www.astesj.com

	 Introduction
	Sequence of Pertubation Technique
	Magnetodynamic subproblem
	Relations of SPs with SSs and VSs

	Finite element weak formulation
	hp-magnetic field formulation with source and reaction fields
	Weak formulation for the TS model
	Projection of solutions between sub-models
	Improvement of the TS model

	Numerical test
	Conclusions

